Powered By Blogger

Selasa, 30 Maret 2010

LAJU REAKSI

TUGAS UMUM PRAKTIKUM KIMIA FISIKA II

Cara Mengukur Polarimetri
Merubah konsentrasi dari suatu zat di dalam suatu reaksi biasanya merubah juga laju reaksi. Persamaan laju menggambarkan perubahaan ini secara matematis. Order reaksi adalah bagian dari persamaan laju. Halaman ini memperkenalkan dan menjelaskan berbagai istilah yang perlu Anda tahu.
Persamaan Laju
Mengukur laju reaksi
Ada beberapa cara untuk mengukur laju dari suatu reaksi. Sebagai contoh, jika gas dilepaskan dalam suatu reaksi, kita dapat mengukurnya dengan menghitung volume gas yang dilepaskan per menit pada waktu tertentu selama reaksi berlangsung.
Definisi Laju ini dapat diukur dengan satuan cm3s-1
Bagaimanapun, untuk lebih formal dan matematis dalam menentukan laju suatu reaksi, laju biasanya diukur dengan melihat berapa cepat konsentrasi suatu reaktan berkurang pada waktu tertentu.
Sebagai contoh, andaikan kita memiliki suatu reaksi antara dua senyawa A dan B. Misalkan setidaknya salah satu mereka merupakan zat yang bisa diukur konsentrasinya-misalnya, larutan atau dalam bentuk gas.

Untuk reaksi ini kita dapat mengukur laju reaksi dengan menyelidiki berapa cepat konsentrasi, katakan A, berkurang per detik.
Kita mendapatkan, sebagai contoh, pada awal reaksi, konsentrasi berkurang dengan laju 0.0040 mol dm-3 s-1.
Hal ini berarti tiap detik konsentrasi A berkurang 0.0040 mol per desimeter kubik. Laju ini akan meningkat seiring reaksi dari A berlangsung.
Kesimpulan
Untuk persamaan laju dan order reaksi, laju reaksi diukur dengan cara berapa cepat konsentrasi dari suatu reaktan berkurang. Satuannya adalah mol dm-3 s-1
Order reaksi
Halaman ini tidak akan mendefinisikan apa arti order reaksi secara langsung, tetapi mengajak kita untuk mengerti apa itu order reaksi.
Order reaksi selalu ditemukan melalui percobaan. Kita tidak dapat menentukan apapun tentang order reaksi dengan hanya mengamati persamaan dari suatu reaksi.
Jadi andaikan kita telah melakukan beberapa percobaan untuk menyelidiki apa yang terjadi dengan laju reaksi dimana konsentrasi dari satu reaktan, A, berubah, Beberapa hal-hal sederhana yang akan kita temui adalah ;
Kemungkinan pertama : laju reaksi berbanding lurus dengan konsentrasi A
Hal ini berarti jika kita melipatgandakan konsentrasi A, laju reaksi akan berlipat ganda pula. JIka kita meningkatkan konsentrasi A dengan faktor 4, laju reaksi pun akan menjadi 4 kali lipat.
Kita dapat mengekspresikan persamaan ini dengan simbol :

Adalah cara yang umum menulis rumus dengan tanda kurung persegi untuk menunjukkan konsentrasi yang diukur dalam mol per desimeter kubik (liter).
Kita juga dapat menulis tanda berbanding lurus dengan menuliskan konstanta (tetapan), k.

Kemungkinan lainnya : Laju reaksi berbanding terbalik dengan kuadrat konsentrasi A
Hal ini berarti jika kita melipatgandakan konsentrasi dari A, laju reaksi akan bertambah 4 kali lipat (22). Jika konsentras dari Ai ditingkatkan tiga kali lipat, laju reaksi akan bertambah menjadi 9 kali lipat (32). Dengan simbol dapat dilambangkan dengan:


Secara umum,
Dengan melakukan percobaan yang melibatkan reaksi antara A dan B, kita akan mendapatkan bahwa laju reaksi berhubugngan dengan konsentrasi A dan B dengan cara :

Hubungan ini disebut dengan persamaan laju reaksi :
Kita dapat melihat dari persamaan laju reaksi bahwa laju reaksi dipengaruhi oleh pangkat dari konsentrasi dari A dan B. Pangkat-pangkat ini disebut dengan order reaksi terhadap A dan B
Jika order reaksi terhadap A adalah 0 (no), berarti konsentrasi dari A tidak mempengaruhi laju reaksi.
Order reaksi total (keseluruhan), didapat dengan menjumlahkan tiap-tiap order. Sebagai contoh, di dalam reaksi order satu terhadap kedua A dan B (a = 1 dan b = 1), order reaksi total adalah 2. Kita menyebutkan order reaksi total dua.
Beberapa contoh
Tiap contoh yang melibatkan reaksi antara A dan B, dan tiap persamaan laju didapat dari ekperimen untuk menentukan bagaimana konsentrasi dari A dan B mempengaruhi laju reaksi.
Contoh 1:

Dalam kasus ini, order reaksi terhadap A dan B adalah 1. Order reaksi total adalah 2, didapat dengan menjumlahkan tiap-tiap order.
Contoh 2:

Pada reaksi ini, A berorder nol karena konsentrasi A tidak mempengaruhi laju dari reaksi. B berorder 2 , sehingga order reaksi total adalah dua.

Contoh 3:

Pada reaksi ini, A berorder satu dan B beroder nol, karena konsentrasi B tidak mempengaruhi laju reaksi. Order reaksi total adalah satu.
Bagaimana bila kita memiliki reaktan-reaktan lebih dari dua lainnya?
Tidak menjadi masalah berapa banyak reaktan yang ada. Konsentasi dari tiap reaktan akan berlangsung pada laju reaksi dengan kenaikan beberapa pangkat. Pangkat-pangkat ini merupakan order tersendiri dari setiap reaksi. Order total (keseluruhan) dari reaksi didapat dengan menjumlahkan tiap-tiap order tersebut.
Ketetapan laju
Hal yang cukup mengejutkan, Ketetapan laju sebenarnya tidak benar-benar konstan. Konstanta ini berubah, sebagai contoh, jika kita mengubah temperatur dari reaksi, menambahkan katalis atau merubah katalis.
Tetapan laju akan konstan untuk reaksi yang diberikan hanya apabila kita mengganti konsentrasi dari reaksi tersebut. Anda akan mendapatkan efek dari perubahaan suhu dan katalis pada laju konstanta pada halaman lainnya.
Kalkulasi yang melibatkan order reaksi
Anda akan dapat menghitung order dari reaksi dan tetapan laju dari data yang diberikan maupun dari hasil percobaan yang Anda lakukan.
Order Reaksi dan Mekanisme Reaksi
Halaman ini menitikberatkan pada hubungan antara order reaksi dan mekanisme dalam beberapa kasus sederhana. Halaman ini menyelidiki apa itu mekanisme, dan konsep tentang langkah penentuan laju reaksi. Halaman ini juga menjelaskan perbedaan antara beberapa istilah yang membingungkan antara “order reaksi” dan “molekularitas reaksi”.
Mekanisme Reaksi
Apa itu mekanisme reaksi?
Dalam perubahaan kimia, beberapa ikatan-ikatan diceraikan dan ikatan-ikatan baru dibentuj. Tidak jarang, perubahan-perubahaan ini begitu rumit untuk dilangsungkan dalam satu langkah sederhana. Melainkan, reaksi sering berlangsung dalam beberapa tahap perubahaan-perubahaan kecil.
Mekanisme reaksi menjelaskan satu atau lebih langkah yang terjadi di reaksi sehingga mampu menggambarkan bagaimana beberapa ikatan tercerai dan terbentuk. Contoh-contoh berikut ini berdasar dari kimia organik yang mudah dimengerti walaupun misalnya Anda tidak terbiasa dengannya.
Reaksi dibawah ini merupakan reaksi 2-bromo-2-metilpropan dengan ion hidroksi dari larutan natrium hidroksi.

Reaksi keseluruhan adalah pergantian atom brom dalam senyawa organik dengan gugus OH.
Hal pertama yang terjadi ialah ikatan karbon-brom dalam komposisi sedikit bercerai menjadi ion-ion:

Ikatan karbon-brom cukup kuat, sehingga reaksi ini berlangsung lambat. Jika ion-ion inti bertumbukan satu dengan yang lainnya, ikatan kovalen akan terbentuk kembali. Tanda anak panah dalam persamaan menunjukkan perpindahan dari sepasang elektron.
Jika terdapat ion hidroksi dalam konsentrasi pekat, ion positif akan memiliki kemungkinan tinggi untuk ditumbuk oleh ion-ion hidroksi. Langkah keseluruhan reaksi akan berlangsung cepat. Ikatan kovalen baru akan dibentuk antara karbon dan oksigen, menggunakan satu dari sepasang elektron kosong dari atom oksigen.

Karena ikatan karbon-oksigen kuat, sekali gugus OH berdempet dengan atom karbon, mereka akan cenderung untuk terus berdempet.
Mekanisme menunjukkan reaksi berlangsung dalam dua langkah dan mengdeskripsikan secara jelas bagaimana langkah-langkah itu berlangsung dalam ikatan-ikatan yang tercerai dan terbentuk. Mekanisme juga menggambarkan bahwa langkah-langkah laju reaksi berbeda -satu lambat dan satunya cepat.
Langkah penentuan laju reaksi
Laju reaksi keseluruhan (dimana pengukurannya diperlukan beberapa eksperimen) dikontrol oleh laju reaksi yang paling lambat. Dalam contoh diatas, ion hidroksi tidak dapat berinteraksi dengan ion positif sampai ion positif terbentuk. Lankah kedua dapat diandaikan dengan reaksi yang menunggu langkah laju reaksi pertama terbentuk.
Langkah reaksi lambat ini disebut juga dengan langkah penentuan laju reaksi.
Sepanjang terdapat beberapa macam laju yang berbeda dari langkah-langkah, ketika kita mengukur laju suatu reaksi, sebenarnya kita mengukur langkah penentuan laju reaksi.
Mekanisme reaksi dan order reaksi
Contoh-contoh yang kita gunakan pada halaman ini merupakan contoh yang sederhana dimana reaksi berlangsung dalam order 0, 1 atau 2. Dimana langkah reaksi lambat berlangsung sebelum langkah-langkah reaksi cepat lainnya.
Contoh 1
Mekanisme dibawah ini merupakan mekanisme yang telah kita bahas. Bagaimana kita tahu mekanisme berlangsung seperti ini?


Dengan melakukan eksperimen laju reaksi, kita dapat menemukan persamaan laju sebagai berikut :

Reaksi ini berorder satu terhadap senyawa organik dan beroder nol terhadap ion hidrokis. Konsentrasi dari ion hidroksi tidak mempengaruhi laju reaksi keseluruhan.
Bila ion hidroksi mengambil bagian dalam langkah reaksi lambat, peningkatan dari konsentrasi akan mempercepat reaksi. Namun peningkatan konsentrasi ini tidak memiliki perubahaan yang berarti, sehingga konsentrasi ion hidroksi berada dalam bagian langkah reaksi cepat.
Peningkatan konsentrasi ion hidroksi akan mempercepat langkah reaksi cepat, tetapi hal ini tidaklah memberikan pengaruh yang berarti pada laju reaksi keseluruhan. Dimana reaksi keseluruhan ditentukan oleh cepatnya laju reaksi lambat.
Dalam kasus sederhana seperti ini, dimana langkah reaksi lambat merupakan langkah pertama, persamaan laju memberitahukan apa saja yang mengambil bagian dalam laju reaksi lambat. Dalam kasus ini, reaksi berorder satu terhadap senyawa organik.
Hal ini memberikan gambaran terhadap kita bagaimana menentukan kemungkinan mekanisme. Apabila kita ingin menentukan suatu mekanisme, kita perlu mencari lebih banyak bukti-bukti untuk memastikannya. Sebagai contoh, dalam kasus ini kita perlu mendeteksi keberadaan ion positif yang dibentuk pada langkah pertama.
Contoh 2
Sekilas reaksi di bawah ini tampak mirip dengan reaksi di atas. Atom brom digantikan dengan gugus OH pada senyawa organik.

Walaupun begitu, persamaan laju dari reaksi yang terlihat mirip ini cukup berbeda. Dimana mekanisme reaksinya berlainan.

Reaksi ini berorder satu terhadap senyawa organik maupun ion hidroksi. Kedua darinya haruslah mengambil bagian dalam langkah laju reaksi lambat. Reaksi haruslah berlangsung dalam keadaan tumbukan langsung diantara mereka.

Atom karbon yang ditumbuk oleh ion hidroksi memiliki muatan positif dan atom brom memiliki muatan negatif yang dikarenakan oleh perbedaan elektronegatifas diantaranya.
Ketika ion hidroksi mendekat, brom akan tertolak dalam suatu langkah yang mulus.
Molekularitas reaksi
Jika kita mengetahui mekanisme dari suatu reaksi, kita dapat menuliskan persamaan dari suatu rangkaian langkah-langkah yang membentuk reaksi tersebut. Tiap langkah-langkah tersebut memiliki molekularitas.
Molekularitas dari sebuat langkah dapat ditentukan dengan menghitung jumlah dari partikel (molekul, ion , atom atau radikal bebas) yang terlibat dalam langkah tersebut. Sebagai contoh, mari kita lihat mekanisme yang telah kita bahas sebelumnnya:

Langkah ini melibatkan satu molekul yang tercerai menjadi ion-ion. Karena hanya ada satu jenis partikel yang terlibat didalam reaksi, maka reaksi ini memiliki molekularitas 1. Ini dapat dideskripsikan sebagai reaksi unimolekular.
Langkah kedua dari mekanisme melibatkan dua ion yang berinteraksi bersama.

Langkah ini memiliki molekularitas 2 atau disebut juga dengan reaksi bimolekular.
Reaksi lainnya yang telah kita bahas terjadi dalam satu langkah yaitu :

Karena dua jenis partikel terlibat (satu molekul dan satu ion), reaksi ini juga merupakan reaksi bimolekular.
Kecuali reaksi keseluruhan yang terjadi dalam satu langka (seperti reaksi terakhir diatas), kita tidak dapat menentukan molekularitasnya. Kita perlu mengetahui mekanisme dan tiap-tiap langkah reaksi memilki molekuralitasnya sendiri.
Satu hal yang perlu diingat dan sering sekali kita dibingungkan adalah konsep molekularitas tidak sama dengan dengan konsep order reaksi

Faktor yang mempengaruhi laju reaksi
Laju reaksi dipengaruhi oleh beberapa faktor, antara lain:
Luas permukaan sentuh
Luas permukaan sentuh memiliki peranan yang sangat penting dalam banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil luas permukaan bidang sentuh, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil. Karakteristik kepingan yang direaksikan juga turut berpengaruh, yaitu semakin halus kepingan itu, maka semakin cepat waktu yang dibutuhkan untuk bereaksi ; sedangkan semakin kasar kepingan itu, maka semakin lama waktu yang dibutuhkan untuk bereaksi.
Suhu
Suhu juga turut berperan dalam mempengaruhi laju reaksi. Apabila suhu pada suatu rekasi yang berlangusng dinaikkan, maka menyebabkan partikel semakin aktif bergerak, sehingga tumbukan yang terjadi semakin sering, menyebabkan laju reaksi semakin besar. Sebaliknya, apabila suhu diturunkan, maka partikel semakin tak aktif, sehingga laju reaksi semakin kecil.
Katalis
Katalis adalah suatu zat yang mempercepat laju reaksi kimia pada suhu tertentu, tanpa mengalami perubahan atau terpakai oleh reaksi itu sendiri. Suatu katalis berperan dalam reaksi tapi bukan sebagai pereaksi ataupun produk. Katalis memungkinkan reaksi berlangsung lebih cepat atau memungkinkan reaksi pada suhu lebih rendah akibat perubahan yang dipicunya terhadap pereaksi. Katalis menyediakan suatu jalur pilihan dengan energi aktivasi yang lebih rendah. Katalis mengurangi energi yang dibutuhkan untuk berlangsungnya reaksi.
Katalis dapat dibedakan ke dalam dua golongan utama: katalis homogen dan katalis heterogen. Katalis heterogen adalah katalis yang ada dalam fase berbeda dengan pereaksi dalam reaksi yang dikatalisinya, sedangkan katalis homogen berada dalam fase yang sama. Satu contoh sederhana untuk katalisis heterogen yaitu bahwa katalis menyediakan suatu permukaan di mana pereaksi-pereaksi (atau substrat) untuk sementara terjerat. Ikatan dalam substrat-substrat menjadi lemah sedemikian sehingga memadai terbentuknya produk baru. Ikatan atara produk dan katalis lebih lemah, sehingga akhirnya terlepas.
Katalis homogen umumnya bereaksi dengan satu atau lebih pereaksi untuk membentuk suatu perantarakimia yang selanjutnya bereaksi membentuk produk akhir reaksi, dalam suatu proses yang memulihkan katalisnya. Berikut ini merupakan skema umum reaksi katalitik, di mana C melambangkan katalisnya:

A + C → AC (1)
B + AC → AB + C (2)

Meskipun katalis (C) termakan oleh reaksi 1, namun selanjutnya dihasilkan kembali oleh reaksi 2, sehingga untuk reaksi keseluruhannya menjadi :
A + B + C → AB + C
Beberapa katalis yang pernah dikembangkan antara lain berupa katalis Ziegler-Natta yang digunakan untuk produksi masal polietilen dan polipropilen. Reaksi katalitis yang paling dikenal adalah proses Haber, yaitu sintesis amoniak menggunakan besi biasa sebagai katalis. Konverter katalitik yang dapat menghancurkan produk emisi kendaraan yang paling sulit diatasi, terbuat dari platina dan rodium.
Molaritas
Molaritas adalah banyaknya mol zat terlarut tiap satuan volum zat pelarut. Hubungannya dengan laju reaksi adalah bahwa semakin besar molaritas suatu zat, maka semakin cepat suatu reaksi berlangsung. Dengan demikian pada molaritas yang rendah suatu reaksi akan berjalan lebih lambat daripada molaritas yang tinggi. Hubungan antara laju reaksi dengan molaritas adalah:
V = k [A]m [B]n
dengan:
• V = Laju reaksi
• k = Konstanta kecepatan reaksi
• m = Orde reaksi zat A
• n = Orde reaksi zat B
Konsentrasi
Karena persamaan laju reaksi didefinisikan dalam bentuk konsentrsi reaktan maka dengan naiknya konsentrasi maka naik pula kecepatan reaksinya. Artinya semakin tinggi konsentrasi maka semakin banyak molekul reaktan yang tersedia denngan demikian kemungkinan bertumbukan akan semakin banyak juga sehingga kecepatan reaksi meningkat.

Senin, 29 Maret 2010

polarimeter

TUGAS KHUSUS PRAKTIKUM KIMIA FISIKA II
NAMA : ARTO MARYANTO
NIM : 56081010016
KELOMPOK : II (DUA)
Polarimeter
Interferensi dan difraksi dapat terjadi pada semua jenis gelombang, misalnya gelombang bunyi, gelombang tali, gelombang pada permukaan cairan ataupun gelombang cahaya. Polarisasi hanya dapat diamati pada gelombang transversal.yang terdapat pada gelombang tali dan cahaya dan tidak terdapat pada gelombang bunyi, karena gelombang bunyi termasuk gelombang longitudinal.
Percobaan sederhana yang membuktikan bahwa cahaya adalah gelombang transversal yang paling mudah yaitu dengan menggunakan lempeng polaroid identis seperti yang digunakan pada kaca mata hitam. Setiap lempeng cukup transparan dan bila satu lempeng ditempatkan di atas yang lain , maka yang terlihat masih transparan. Tetapi bila salah satu diputar perlahan-perlahan daerah yang tumpang tindih akan menjadi gelap.
Berabad-abad sebelum penemuan lempeng polaroid, peristiwa tersebut diamati dengan menggunakan kristal tertentu yang secara alamiah seperti kalsit. Dalam kenyataan, Newton meninjau peristiwa ini sebagai bukti melawan teori gelombang cahaya karena setiap orang kemudian mengandaikan bahwa cahaya adalah gelombang longitudinal. Namun demikian tidak seorangpun dapat menjelaskan bagaimana intensitas gelombang longitudinal dapat terpengaruh dengan perputaran sesuatu di sekitar sumbu sejajar pada arah gerak gelombang.
Pada tahun 1817, F. Young merupakan orang pertama yang menunjukkan bahwa cahaya adalah gelombang transversal. Gelombang longitudinal hanya dapat bergetar satu arah, sedang gelombang transversal dapat bergetar pada berbagai arah yang terletak pada bidang yang tegak lurus pada arah gerak. Dalam suatu berkas cahaya yang tertutup, semua rentetan bergerak dalam arah lintang yang sama sehingga berkas tersebut dapat disajikan oleh amplitudo A.
Simpangan titik-titik pada tali tegak lurus dengan arah rambat gelombangnya. Ada gelombang yang simpangannya menjalar menurut bidang XOY (bidang vertikal). Ada juga gelombang yang simpangannya menurut bidang XOZ (bidang horisontal). Kedua gelombang tersebut mungkin resultan dari gelombang-gelombang yang arah simpangannya sembarang arah. Jadi gelombang transversal apapun dapat ditampilkan sebagai resultan dari dua komponen gelombang, yang satu hanya memiliki simpangan pada sumbu y, yang lainnya hanya ada pada sumbu z.
Gelombang yang terpolarisasi pada sumbu Y disebut terpolarisasi linear pada sumbu Y. Gelombang yang hanya menyimpang pada sumbu Z disebut terpolarisasi linear pada sumbu Z. Supaya cahaya bisa terpolarisasi digunakan filter yang hanya meneruskan gelombang-gelombang pada arah polarisasi tertentu saja.
Filter polarisasi cahaya dikenal dengan nama polaroid. Polaroid digunakan pada kaca mata pelindung sinar matahari (sunglasess) dan pada filter polarisasi lensa kamera. Cara kerja polaroid berdasarkan prinsip penyerapan, yaitu meneruskan 80% atau lebih gelombang-gelombang yang terpolarisasi sejajar dengan sumbu polarisas, serta hanya melewatkan 1% atau kurang gelombang yang tegak lurus dengan sumbu polarisasi.

Dari uraian tersebut dapat didefinisikan bahwa polarisasi adalah terserapnya sebagian arah geter cahaya. Cahaya yang sebagian besar arah getarnya terserap disebut cahaya terpolarisasi, dan jika cahaya hanya mempunyai satu arah gelombang disebut cahaya terpolarisasi linear.
Cahaya terpolarisasi dapat diperoleh dari cahaya yang tidak terpolarisasi. Yitu dengan menghilangkan (memindahkan) semua arah getar dan melewatkan salah satu arah getar saja. Ada empat cara untuk melakukan hal itu :
* Penyerapan selektif
* Pemantulan
* Pembiasan ganda
* Hamburan
Polarisasi dengan penyerapan selektif
Teknik yang umum dipakai untuk menghasilkan cahaya terpolarisasi adalah menggunakan polaroid, yang akan meneruskan gelombang-gelombang yang arah getarnya sejajar dengan sumbu polarisasi dan menyerap gelombang-gelombang pada arah getar lainnya. Oleh karena itu, teknik ini disebut polarisasi dengan penyerapan selektif. Suatu polaroid ideal akan meneruskan semua medan yang sejajar dengan sumbu polarisasi dan menyerap semua yang tegak lurus dengan sumbu polarisasi.
Jadi analisator berfungsi mengurangi intensitas cahaya yang terpolarisasi. Intensiras cahaya yang diteruskan akan mencapai maksimum, jika kedua sumbu polarisasi sejajar, dan mencapai minimum jika kedua sumbu polarisasi saling tegak lurus.

Polarisasi dengan pemantulan
Jika cahaya menuju kebidang batas antara dua medium, maka sebagian cahaya akan dipantulkan. Ada tiga kemungkinan cahaya yang terpantul yaitu:

* Cahaya pantul tidak terpolarisasi
* Cahaya pantul terpolarisasi sebagian
* Cahaya pantul terpolarisasi sempurna
ketiga kemungkinan diatas tergantung pada besaran sudut datang cahaya. Cahaya pantul tidak terpolarisasi jika sudut datang 00 (searah garis normal bidang batas) atau 900 (searah bidang batas). Cahaya pantul terpolarisasi sebagian jika sudut datang antara 00 sampai 900. Cahaya pantul terpolarisasi sempurna jika sudut datang mempunyai nilai tertentu (disebut sudut polarisasi).
Cahaya dapat diuraikan menjadi dua komponen arah getar. Yang satu sejajar dengan bidang (dinyatakan oleh titik) dan yang satu tegak lurus dengan komponen pertama (dinyatakan dengan panah). Ternyata komponen yang sejajar dipantulkan lebih kuat daripada komponen tegak lurus, hal ini dikatakan sinar pantul terpolarisasi sebagian.
Sinar datang kemudian dilambangkan dengan I, lalu diubah sampai sinar bias dan sinar pantul membentuk sudut 900, pada sudut ini ternyata sinar pantul terpolarisasi sempurna dengan arah getar sejajar dengan bidang. Sudut datang tersebut disebut sebagai sudut polarisasi.
Prinsip polarisasi pemantulan dimanfaatkan pada kaca pelindung sinar matahari dan lensa. Kaca mata pelindung sinar matahari dibuat dari bahan polaroid untuk mengurangi intensitas sinar pantul matahari (mengurangi kilau cahaya matahari).

Polarisasi dengan pembiasan ganda
Jika cahaya melalui kaca, maka cahaya lewat dengan kelajuan sama ke segala arah. Ini disebabkan kaca mempunyai satu indeks bias. Tetapi dalam bahan kristal tertentu seperti kalsit dan kuarsa. Kelajuan cahaya tidak sama untuk ke segala arah. Ini disebabkan kristal mempunyai lebih dari satu nilai indeks bias. Jadi cahaya yang lewat mengalami pembiasan ganda.
Jika seberkas sinar datang searah garis normal, maka sinar ini akan dibagi menjadi dua sinar. Sinar pertama diteruskan tanpa pembelokan disebut sebagai sinar biasa. Sinar kedua dibelokkan, dan disebut sebagai sinar istimewa. Peristiwa ini disebut sebagai polarisasi dengan pembiasan ganda.
Jadi polarisasi pembiasan ganda terjadi pada kristal yang memiliki lebih dari satu nilai indeks bias. Jika seberkas sinar datang searah dengan sumbu normal, maka akan dibagi menjadi dua, yaitu sinar biasa dan sinar istimewa.
Polarisasi dengan hamburan
Jika cahaya datang pada suatu sistem (misal. gas), maka elektron-elektron dalam partikel dapat menyerap dan memancarkan kembali sebagian dari cahaya. Penyerapan dan pemantulan kembali ini disebut sebagai hamburan. Hamburan inilah yang menyebabkan cahaya matahari mengenai pengamat di bumi terpolarisasi sebagian.

Hamburan jugalah yang menyebabkan langit tampak biru. Berdasarkan analisis tentang hamburan, untuk intesitas cahaya tertentu, intensitas cahaya yang dihamburkan bertambah dengan bertambahnya frekuensi. Karena cahaya biru mempunyai frekuensi yang lebih tinggi dari cahaya merah, maka cahaya biru dihamburkan lebih banyak dari cahaya merah.
Reaksi kimia
Uap hidrogen klorida dalam beker dan amonia dalam tabung percobaan bereaksi membentuk awan amonium klorida
Reaksi kimia adalah suatu proses alam yang selalu menghasilkan antarubahan senyawa kimia.[1] Senyawa ataupun senyawa-senyawa awal yang terlibat dalam reaksi disebut sebagai reaktan. Reaksi kimia biasanya dikarakterisasikan dengan perubahan kimiawi, dan akan menghasilkan satu atau lebih produk yang biasanya memiliki ciri-ciri yang berbeda dari reaktan. Secara klasik, reaksi kimia melibatkan perubahan yang melibatkan pergerakan elektron dalam pembentukan dan pemutusan ikatan kimia, walaupun pada dasarnya konsep umum reaksi kimia juga dapat diterapkan pada transformasi partikel-partikel elementer seperti pada reaksi nuklir.
Reaksi-reaksi kimia yang berbeda digunakan bersama dalam sintesis kimia untuk menghasilkan produk senyawa yang diinginkan. Dalam biokimia, sederet reaksi kimia yang dikatalisis oleh enzim membentuk lintasan metabolisme, di mana sintesis dan dekomposisi yang biasanya tidak mungkin terjadi di dalam sel dilakukan.
Jenis-jenis reaksi
Beragamnya reaksi-reaksi kimia dan pendekatan-pendekatan yang dilakukan dalam mempelajarinya mengakibatkan banyaknya cara untuk mengklasifikasikan reaksi-reaksi tersebut, yang sering kali tumpang tindih. Di bawah ini adalah contoh-contoh klasifikasi reaksi kimia yang biasanya digunakan.
• Isomerisasi, yang mana senyawa kimia menjalani penataan ulang struktur tanpa perubahan pada kompoasisi atomnya
• Kombinasi langsung atau sintesis, yang mana dua atau lebih unsur atau senyawa kimia bersatu membentuk produk kompleks:
N2 + 3 H2 → 2 NH3
• Dekomposisi kimiawi atau analisis, yang mana suatu senyawa diurai menjadi senyawa yang lebih kecil:
2 H2O → 2 H2 + O2
• Penggantian tunggal atau substitusi, dikarakterisasikan oleh suatu unsur digantikan oleh unsur lain yang lebih reaktif:
2 Na(s) + 2 HCl(aq) → 2 NaCl(aq) + H2(g)
• Metatesis atau Reaksi penggantian ganda, yang mana dua senyawa saling berganti ion atau ikatan untuk membentuk senyawa yang berbeda:
NaCl(aq) + AgNO3(aq) → NaNO3(aq) + AgCl(s)
• Reaksi asam basa, secara luas merupakan reaksi antara asam dengan basa. Ia memiliki berbagai definisi tergantung pada konsep asam basa yang digunakan. Beberapa definisi yang paling umum adalah:
o Definisi Arrhenius: asam berdisosiasi dalam air melepaskan ion H3O+; basa berdisosiasi dalam air melepaskan ion OH-.
o Definisi Brønsted-Lowry: Asam adalah pendonor proton (H+) donors; basa adalah penerima (akseptor) proton. Melingkupi definisi Arrhenius.
o Definisi Lewis: Asam adalah akseptor pasangan elektron; basa adalah pendonor pasangan elektron. Definisi ini melingkupi definisi Brønsted-Lowry.
• Reaksi redoks, yang mana terjadi perubahan pada bilangan oksidasi atom senyawa yang bereaksi. Reaksi ini dapat diinterpretasikan sebagai transfer elektron. Contoh reaksi redoks adalah:
2 S2O32−(aq) + I2(aq) → S4O62−(aq) + 2 I−(aq)
Yang mana I2 direduksi menjadi I- dan S2O32- (anion tiosulfat) dioksidasi menjadi S4O62-.
• Pembakaran, adalah sejenis reaksi redoks yang mana bahan-bahan yang dapat terbakar bergabung dengan unsur-unsur oksidator, biasanya oksigen, untuk menghasilkan panas dan membentuk produk yang teroksidasi. Istilah pembakaran biasanya digunakan untuk merujuk hanya pada oksidasi skala besar pada keseluruhan molekul. Oksidasi terkontrol hanya pada satu gugus fungsi tunggal tidak termasuk dalam proses pembakaran.
C10H8+ 12 O2 → 10 CO2 + 4 H2O
CH2S + 6 F2 → CF4 + 2 HF + SF6
• Disproporsionasi, dengan satu reaktan membentuk dua jenis produk yang berbeda hanya pada keadaan oksidasinya.
2 Sn2+ → Sn + Sn4+
• Reaksi organik, melingkupi berbagai jenis reaksi yang melibatkan senyawa-senyawa yang memiliki karbon sebagai unsur utamanya.
Kinetika kimia
Laju reaksi suatu reaksi kimia merupakan pengukuran bagaimana konsentrasi ataupun tekanan zat-zat yang terlibat dalam reaksi berubah seiring dengan berjalannya waktu. Analisis laju reaksi sangatlah penting dan memiliki banyak kegunaan, misalnya dalam teknik kimia dan kajian kesetimbangan kimia. Laju reaksi secara mendasar tergantung pada:
• Konsentrasi reaktan, yang biasanya membuat reaksi berjalan dengan lebih cepat apabila konsentrasinya dinaikkan. Hal ini diakibatkan karena peningkatan pertumbukan atom per satuan waktu,
• Luas permukaan yang tersedia bagi reaktan untuk saling berinteraksi, terutama reaktan padat dalam sistem heterogen. Luas permukaan yang besar akan meningkatkan laju reaksi.
• Tekanan, dengan meningkatkan tekanan, kita menurunkan volume antar molekul sehingga akan meningkatkan frekuensi tumbukan molekul.
• Energi aktivasi, yang didefinisikan sebagai jumlah energi yang diperlukan untuk membuat reaksi bermulai dan berjalan secara spontan. Energi aktivasi yang lebih tinggi mengimplikasikan bahwa reaktan memerlukan lebih banyak energi untuk memulai reaksi daripada reaksi yang berenergi aktivasi lebih rendah.
• Temperatur, yang meningkatkan laju reaksi apabila dinaikkan, hal ini dikarenakan temperatur yang tinggi meningkatkan energi molekul, sehingga meningkatkan tumbukan antar molekul per satuan waktu.
• Keberadaan ataupun ketiadaan katalis. Katalis adalah zat yang mengubah lintasan (mekanisme) suatu reaksi dan akan meningkatkan laju reaksi dengan menurunkan energi aktivasi yang diperlukan agar reaksi dapat berjalan. Katalis tidak dikonsumsi ataupun berubah selama reaksi, sehingga ia dapat digunakan kembali.
• Untuk beberapa reaksi, keberadaan radiasi elektromagnetik, utamanya ultraviolet, diperlukan untuk memutuskan ikatan yang diperlukan agar reaksi dapat bermulai. Hal ini utamanya terjadi pada reaksi yang melibatkan radikal.
Laju reaksi berhubungan dengan konsentrasi zat-zat yang terlibat dalam reaksi. Hubungan ini ditentukan oleh persamaan laju tiap-tiap reaksi. Perlu diperhatikan bahwa beberapa reaksi memiliki kelajuan yang tidak tergantung pada konsentrasi reaksi. Hal ini disebut sebagai reaksi orde nol.
Kinetika kimia merupakan salah satu cabang ilmu kimia fisika yang mempelajari laju reaksi. Laju reaksi berhubungan dengan pembahasan seberapa cepat atau lambar reaksi berlagsung. Sebagai contoh seberapa cepat reaksi pemusnahan ozon di atmosfer bumi, seberapa cepat reaksi suatu enzim dalam tubuh berlangsung dan sebagainya. Bila terdapat reaksi sebagai berikut:
aA + bB -> cC + dD
dimana a, b, c, dan d adalah koefisien reaksi dan A, B adalah reaktan dan C, D adalah produk reaksi. Laju reaksi dapat didefinikan sebagai pengurangan reaktan tiap satuan waktu dan derumuskan sebagai:
atau didefinisikan sebagai penambahan jumlah produk tiap satuan waktu dan dirumuskan sebagai:
tanda minus (-) digunakan pada reaktan disebabkan jumlah reaktan setelah t detik akan lebih kecil dibandingan dengan jumlah reaktan pada to (waktu awal) sehingga untuk mendapatkan hasil v yag bernilai positif maka harus ditambahkan tanda minus. Nilai v yang dicarai dari keempat cara diatas yaitu dengan memakai [A], [B], [C], dan [D] akan memiliki nilai yang sama.
Persamaan Laju Reaksi
Persamaan laju reaksi mendiskripsikan persamaan matematika yang dipegunakan dalam kinetika kimia yang menghubungkan antara laju reaksi dengan konsentrasi reaktan. Untuk reaksi yang sama seperti diatas,
aA + bB -> cC + dD
maka persamaan laju reaksinya secara umum dapat didefinisikan sebagai berikut:
v = k[A]a[B]b
dimana k adalah konstanta laju reaksi, a disebut orde reaksi terhadap A dan b disebut orde reaksi terhadap B. Penjumlahan a+b meghasilkan orde reaksi total. Persamaan laju reaksi tidak dapat ditentukan secara teoritis akan tetapi bisa ditentukan melalui percobaan kimia/eksperimental. Ada kalanya reaksi hanya dipengaruhi oleh satu reaktan atupun semua reaktan, dan nilai order reaksi bisa sama dengan koefisien reaksi maupun tidak.
Berdasarkan orde reaksi totalnya maka reaksi dibedakan atas reaksi orde 1, orde 2, orde 3 dan sebagainya. Ada kalanya reaksi berorder “nol” yang artinya reaksi tidak dipengaruhi oleh reaktan yang terlibat dalam reaksi, dan biasanya terjadi pada reaksi dekomposisi/ penguraian.
Bila terdapat reaktan yang berbentuk padatan maka reaktan ini tidak dimasukkan dalam persamaan reaksi disebabkan reaksi yang terjadi pada padatan hanya terjadi pada permukaan padatan sehingga konsentrasinya dianggap constant.

Minggu, 28 Maret 2010

Kikim Selatan, Lahat

Kikim Selatan adalah sebuah kecamatan di Kabupaten Lahat, Sumatera Selatan, Indonesia. Kecamatan ini merupakan pemekaran dari kecamatan KIKIM. Ibukota kecamatan ini adalah Pagar Jati. Kecamatan ini berada dialiran sungai lingsing bagian hulu. Kecamatan kikim selatan telah memiliki puskesmas induk yang berkedudukan di desa Pagarjati. Desa-desa yang termasuk dalam kecamatan Kikim selatan antara lain : Desa Banuayu, Tanjung Alam, Pagar jati dan masih banyak desa-desa lainnya. Penduduk kecamatan KIKIM selatan mayoritas beragama Islam (100%) dan merupakan penduduk asli setempat (jeme KIKIM).

Kikim Timur, Lahat

Kikim Timur adalah sebuah kecamatan di Kabupaten Lahat, Sumatera Selatan, Indonesia. Kecamatan ini merupakan pemekaran dari kecamatan KIKIM. Ibukota kecamatan ini adalah Bungamas dan merupakan kecamatan induk. Sebagian Kecamatan ini berada dialiran KIKIM dan sungai Empayang. Kecamatan kikim Timur telah memiliki puskesmas induk yang berkedudukan di desa Bungamas dan Pustu di desa-desa lainnya. Desa-desa yang termasuk dalam kecamatan Kikim timur antara lain : Desa Bungamas, Cecar, Muara Empayang, Gunung Kerte, Gunung Aji, Karang Endah, Paduraksa, Petikal dan masih banyak desa-desa lainnya. Penduduk kecamatan KIKIM Timur mayoritas beragama Islam (100%) dan merupakan penduduk asli setempat (jeme KIKIM). Sebagian besar penduduk kecamatan Kikim Timur bermata pencarian sebagai Petani Karet, Kopi, Padi Darat, Sawah dan wiraswasta.

KINENETIKA REAKSI

KINETIKA KIMIA


Mengapa beberapa reaksi kimia berlangsung secepat kilat sementara yang lainnya memerlukan waktu berhari-hari, berbulan-bulan bahkan tahunan untuk menghasilkan produk yang cukup banyak? Bagaimana katalis bisa meningkatkan laju reaksi kimia? Mengapa perubahan suhu yang sedikit saja sering memberikan efek besar pada laju memasak? Bagaimana kajian mengenai laju reaksi kimia memberikan informasi tentang bagaimana cara molekul bergabung membentuk produk? Semua pertanyaan ini menyangkut kinetika kimia belum selengkap seperti termodinamika. Masih banyak reaksi yang tetapan kesetimbangannya telah diketahui dengan cermat, tetapi perincian lintasan reaksinya masih belum dipahami. Ini terutama berlaku untuk reaksi yang melibatkan banyak unsur reaktan yang membentuk produknya.

Kinetika kimia adalah bagian dari ilmu kimia yang mempelajari laju dan mekanisme reaksi kimia. Besi lebih cepat berkarat dalam udara lembab daripada dalam udara kering; makanan lebih cepat membusuk bila tidak didinginkan; kulit bule lebih cepat menjadi gelap dalam musim panas daripada dalam musim dingin. Ini merupakan tiga contoh yang lazim dari perubahan kimia yang kompleks dengan laju yang beraneka menurut kondisi reaksi.

Definisi Laju Reaksi


Laju reaksi rerata analog dengan kecepatan rerata mobil. Jika posisi rerata mobil dicatat pada dua waktu yang berbeda, maka :

kec_rerata

Dengan cara yang sama, laju reaksi rerata diperoleh dengan membagi perubahan konsentrasi reaktan atau produk dengan interval waktu terjadinya reaksi :

laju_reaksi_rerata

Jika konsentrasi diukur dalam mol L-1 dan waktu dalam detik, maka laju reaksi mempunyai satuan mol L-1s-1. Kita ambil contoh khusus. Dalam reaksi fasa gas

reaksi_fasa_gas

NO2 dan CO dikonsumsi pada saat pembentukan NO dan CO2. Jika sebuah kuar dapat mengukur konsentrasi NO, laju reaksi rerata dapat diperkirakan dari nisbah perubahan konsentrasi NO, ∆[NO] terhadap interval waktu, ∆t:

lajurerata

Jadi laju reaksi adalah besarnya perubahan konsentrasi reaktan atau produk dalam satu satuan waktu. Perubahan laju konsentrasi setiap unsur dibagi dengan koefisiennya dalam persamaan yang seimbang/stoikiometri. Laju perubahan reaktan muncul dengan tanda negatif dan laju perubahan produk dengan tanda positif.

Untuk reaksi yang umum:

aA + bB → cC + dD

Lajunya ialah

laju

Hubungan ini benar selama tidak ada unsur antara atau jika konsentrasinya bergantung pada waktu di sepanjang waktu reaksi.

Menentukan Laju Reaksi :

Perhatikan penguraian nitrogen dioksida, NO2 menjadi nitrogen oksida, NO dan oksigen, O2 : 2NO2 → 2NO + O2

a. Tulislah pernyataan untuk laju rata-rata berkurangnya konsentrasi NO2 dan laju rata-rata bertambahnya konsentrasi NO dan O2.

b. Jika laju rata-rata berkurangnya konsentrasi NO2 ditetapkan dan dijumpai sebesar 4×10-13mol L-1s-1, berapakah laju rata-rata padanannya (dari) bertambahnya konsentrasi NO dan O2

Jawaban :

a. Laju rata-rata berkurangnya konsentrasi NO2 dinyatakan sebagai :

laju_no2

Laju rata-rata bertambahnya konsentrasi NO dan O2 dinyatakan sebagai:

laju_rata_rata

b. Untuk tiap dua molekul NO2 yang bereaksi terbentuk dua molekul NO. Jadi berkurangnya konsentrasi NO2 dan bertambahnya konsentrasi NO berlangsung dengan laju yang sama

laju_sama

Hukum Laju

Dalam membahas reaksi kesetimbangan kimia telah ditekankan bahwa reaksi ke kanan maupun ke kiri dapat terjadi begitu produk terbentuk, produk ini dapat bereaksi kembali menghasilkan reaktan semula.

Laju bersih ialah:

Laju bersih = laju ke kanan – laju ke kiri

Dapat dikatakan, pengukuran konsentrasi memberikan laju bersih, bukannya sekedar laju ke kanan. Bagaimanapun, sesaat sebelum reaksi yang dimulai dari reaktan murni, konsentrasi reaktan jauh lebih tinggi dibandingkan produknya sehingga laju ke kiri dapat diabaikan. Selain itu, banyak reaksi berlangsung sempurna (K>>1) sehingga laju yang terukur hanyalah reaksi ke kanan atau eksperimen dapat diatur agar produknya dapat dialihkan jika terbentuk. Dalam subbab ini, persamaan diberikan pada laju ke kanan saja.

Jumat, 26 Maret 2010

KALIUM PERMANGANAT

Kalium Permanganat (PK)

Kalium permanganat (PK) merupakan oksidator kuat yang sering digunakan untuk mengobati penyakit ikan akibat ektoparasit dan infestasi bakteri terutama pada ikan-ikan dalam kolam. Meskipun demikian untuk pengobatan ikan-ikan akuarium tidak sepenuhnya dianjurkan karena diketahui banyak spesies ikan hias yang sensitif terhadap bahan kimia ini.
Bahan ini diketahui efektif mencegah flukes, tricodina, ulcer, dan infeksi jamur. Meskipun demikian, penggunaanya perlu dilakukan dengan hati-hati karena tingkat keracunannya hanya sedikit lebih tinggi saja dari tingkat terapinya. Oleh karena itu, harus dilakukan dengan dosis yang tepat. Tingkat keracunan PK secara umum akan meningkat pada lingkungan akuarium yang alkalin. Potasium permanganat tersedia sebagai serbuk maupun larutan berwarna violet.
Kalium permanganat (KMnO4) merupakan alkali kaustik yang akan tersdisosiasi dalam air membentuk ion permanganat (MnO4-) dan juga mangan oksida (MnO2) bersamaan dengan terbentuknya molekul oksigen elemental. Oleh karena itu, efek utama bahan ini adalah sebagai oksidator.
Dilaporkan bahwa permanganat merupakan bahan aktif beracun yang mampu membunuh berbagai parasit dengan merusak dinding-dinding sel mereka melalui proses oksidasi. Beberapa literatur menunjukkan bahwa mangan oksida membentuk kompleks protein pada permukaan epithelium, sehingga menyebabkan warna coklat pada ikan dan sirip, juga membentuk kompleks protein pada struktur pernapasan parasit ikan yang akhirnya menyebabkan mereka mati.
Berbagai review dalam berbagai literatur menunjukkan bahwa kalium permangat dapat membunuh Saprolegnia, Costia, Chilodinella, Ich, Trichodina, Gyrodactylus dan Dactylogyrus, Argulus, Piscicola, Lernea, Columnaris dan bakteri lainnya seperti Edwardsiella, Aeromonas, Pseudomonas, plus Algae dan Ambiphrya.
Mekipun demikian Argulus, Lernea and Piscicola diketahui hanya akan respon apabila PK digunakan dalam perendaman (dengan dosis: 10-25 ppm selama 90 menit). Begitu pula dengan Costia dan Chilodinella, dilaporkan resiten terhadap PK, kecuali apabila PK digunakan sebagai terapi perendaman.
Kalium permangat sebagai terapi perendaman bersifat sangat kaustik, hal ini dapat menyebabkan penggumpalan nekrosis (ditandai dengan memutihnya jaringan yang mati) pada sirip. Kerusakan insang juga dapat terjadi, sehingga dapat menyebabkan kematian pada ikan beberapa minggu kemudian setelah dilakukan terapi perendaman. Ikan mas koki, diketahui lebih sensitif terhadap PK sebagai terapi perendaman dibandingkan dengan spesies lainnya. Dengan alasan-alasan seperti itu, maka sering tidak direkomendasikan untuk menggunakan PK sebagai terapi perendaman, dan juga karena efek terapeutiknya tidak lebih baik dibandingakan dengan terapi terus-menerus dengan dosis 2 - 4 ppm.
Kalium permanganat sangat efektif dalam menghilangkan Flukes. Gyrodactylus dan Dactylus dapat hilang setelah 8 jam perlakuan dengan dosis 3 ppm pada suatu sistem tertutup. Penularan kembali masih dapat terjadi, oleh karena itu, direkomendasikan untuk mengulang kembali perlakuan 2-3 hari kemudian dengan dosis 2 ppm.
Beberapa khasiat lain dari Kalium permangat yang dilaporkan diantaranya adalah: sebagai disinfektan luka, dapat mengurangi aeromanoas (hingga 99%) dan bakteri gram negatif lainnya, dapat membunuh Saprolegnia yang umum dijumpai sebagai infeksi sekunder pada Ulcer, dan tentu saja sebagai oksidator yang akan mengkosidasi bahan organik.
Beberapa aplikasi lain yang biasa dilakukan oleh para hobiis dan akuakulturis adalah menggunakannya dalam proses transportasi ikan. Konsentrasi kurang dari 2 ppm diketahui dapat mengurangi resiko infeksi Columnaris dan infeksi bakteri lainnya, serta membatasi dan menghentikan parasit yang sering menyertai ikan dalam proses transportasi. Begitu juga transportasi burayak dilaporkan aman dengan perlakuan kalium permanganat dibawah 2 ppm. Meskipun demikian untuk burayak dalam kolam tidak dianjurkan untuk menggunakan perlakuan kalium permanganat. Hal ini tidak ada hubungannya dengan keracunan yang mungkin terjadi pada burayak, tetapi efeknya justru terhadap kemungkinan berkurangnya fitoplankton dan makrofit yang dapat menyebabkan burayak menderita kelaparan.
Untuk jenis Catfish, perlakuann kalium permanganat sering dianjurkan untuk dilakukan pada konsentrasi diatas 2 ppm. Meskipun demikian dosis yang aman adalah 2 ppm.
Fungsi lain dari kalium permanganat dalam akuakultur adalah sebagai antitoxin terhadap aplikasi bahan-bahan beracun. Sebagai contoh, Rotenone dan Antimycin sering digunakan sebagai bahan piscisida, yaitu bahan untuk membunuh ikan hama atau ikan lain yang tidak dikehendaki. Alih-alih menunggu bahan ini netral secara alamiah dalam waktu tertentu, kalium permanganat digunakan untuk segera menetralkan kedua bahan tersebut. Konsentrasi 2-3 ppm selama 10-20 jam diketahui cukup untuk menetralisir residu Rotenone atau Antimycin. Pendapat lain menyatakan bahwa dosis PK sebaiknya diberikan setara dengan dosis piscisida yang diberikan, sebagai contoh apabila Rotenone diberikan sebanyak 2 ppm, makan untuk menetralisirnya PK pun diberikan sebanyak 2 ppm.
Prosedur Perlakuan PK (untuk jamur, parasit, dan bakteri)
Pertama by pass filter biologi. PK dapat membunuh bakteri dalam filter biologi. Kedua pastikan bahwa aliran air dan aerasi bekerja optimal, karena pada saat molekul-molekul oragnik teroksidasi, dan algae mati maka air akan cenderung keruh dan oksigen terlarut menurun. Ketiga berikan dosis sebanyak 2-4 ppm.
Dosis 2 ppm diberikan pada ikan-ikan muda atau ikan-ikan yang tidak bersisik. Sedangkan dosis 4 ppm diberlakukan pada ikan-ikan bersisik. Selang dosis tersebut tidak akan merusak tanaman, sehingga biasa digunakan untuk mensterilkan tanaman dari hama dan penyakit, terutama dari gangguan siput dan telurnya.
Sebagai gambaran umum satu sendok teh peres (jangan dipadatkan) kurang lebih setara dengan 6 gram. Hal ini dapat dijadikan patokan untuk mendapatkan dosis yang diinginkan apabila timbangan tidak tersedia.
Perlakuan biasanya dilakukan 4 kali berturut dalam waktu 4 hari, dengan pemberian PK dilakukan setiap pagi hari. Apabila pada perlakuan ketiga atau keempat air bertahan berwarna ungu selama lebih dari 8 jam (warna tidak berubah menjadi coklat), maka hal ini dapat dijadikan pertanda untuk menghentikan perlakuan. Karena hal ini menunjukkan bahwa PK sudah tidak bereaksi lagi, atau dengan kata lain sudah tidak ada lagi bahan yang dioksidasi. Setelah perlakuan dihentikan lakukan penggantian air sebanyak 40 % untuk segera membantu pemulihan warna air.

Mangan
Kata Kunci: mangan, manganat
Ditulis oleh Jim Clark pada 06-10-2007
Halaman ini terdiri dari: dua reaksi sederhana ion mangan(II) dalam larutan (hasil ringkasan dari bagian lain situs), dan kegunaan kalium manganat(VII) (kalium permanganat) sebagai agen pengoksidasi – termasuk kegunaannya dalam titrasi.
Reaksi ion mangan(II) dalam larutan

Ion yang paling sederhana dalam bentuk mangan dalam larutan adalah ion heksaaquomangan(II) – [Mn(H2O)6]2+.
Reaksi ion heksaaquomangan(II) dengan ion hidroksida

Ion hidroksida (dari, katakanlah, larutan natrium hidroksida) dapat menghilangkan ion hidrogen dari ligan air dan kemudian melekat pada ion mangan.

Setelah ion hidrogen dihilangkan dari dua molekul air, kamu akan memperoleh kompleks tidak bermuatan – kompleks netral. Kompleks netral ini tidak larut dalam air dan terbentuk endapan.

Dalam tabung reaksi, perubahan warna yang terjadi adalah:

Saya dapat menunjukkan bahwa larutan aslinya berwarna merah muda yang pucat sekali (warna merah muda paling pucat yang bisa saya hasilkan!), tetapi pada faktanya larutan tersebut sebenarnya tidak berwarna. Endapan coklat pucat di oksidasi menjadi mangan(II) oksida yang berwarna coklat lebih gelap pada saat bersentuhan dengan oksigen dari udara.
Reaksi ion heksaaquomangan(II) dengan larutan amonia

Amonia dapat berperan sebagai basa maupun sebagai ligan. Pada kasus ini, pada konsentrasi laboratorium yang biasa, amonia berperan sebagai basa – dapat menghilangkan ion hidrogen dari kompleks aquo.


Sekali lagi, saya dapat menunjukkan larutan asli sebagai larutan berwarna merah muda paling pucat yang dapat saya hasilkan, tetapi pada faktanya larutan tersebut sebenarnya tidak berwarna. Endapan coklat pucat di oksidasi menjadi mangan(II) oksida yang berwarna coklat lebih gelap ketika bersentuhan dengan oksigen dari udara.

Tidak terlihat perbedaan bentuk reaksi antara reaksi tersebut dengan reaksi yang terakhir.
Beberapa sifat kimia kalium manganat(VII)
Kalium manganat(VII) (kalium permanganat) merupakan agen pengoksidasi yang kuat.

Penggunaan kalium manganat(VII) sebagai agen pengoksidasi dalam kimia organik

Kalium manganat(VII) biasa digunakan dalam larutan netral atau larutan yang bersifat basa dalam kimia organik. Pengasaman kalium manganat(VII) cenderung untuk lebih meningkatkan kekuatan destruktif agen pengoksidasi, memecah ikatan-ikatan karbon-karbon.

Larutan kalium manganat(VII) biasa dibuat sedikit basa dengan larutan natrium karbonat, dan perubahan warna yang khas adalah sebagai berikut:

Pada pengujian untuk ikatan rangkap C=C

Kalium manganat(VII) mengoksidasi ikatan rangkap karbon-karbon, dan berlangsung melalui perubahan warna diatas.

Etana, sebagai contoh, di oksidasi menjadi etana-1,2-diol.

Oksigen dalam tanda kurung persegi berarti ”oksigen dari agen pengoksidasi”. Ini merupakan singkatan dari persamaan yang banyak digunakan dalam kimia organik. Kamu pasti sangat tidak menyukai untuk menulis persamaan ion yang lengkap untuk reaksi tersebut pada tingkatan ini.

Sejujurnya, pengujian ini bukanlah suatu tes yang baik untuk ikatan rangkap karbon-karbon, karena semua yang mengalami reduksi dapat memiliki efek yang sama pada larutan kalium manganat(VII).

Akan tetapi, kamu dapat menggunakan reaksi sederhana ini sebagai cara untuk membuat diol.
Pada oksidasi rantai cabang aromatik

Larutan kalium menganat(VII) yang bersifat basa mengoksidasi semua rantai cabang yang melekat pada pada cincin benzen menjadi satu grup -COOH. Pemanasan yang lama sangat diperlukan pada tahap ini.
Sebagai contoh:

Pada kasus rantai cabang etil, kamu juga akan memperoleh karbon dioksida. Dengan rantai cabang yang lebih panjang, kamu dapat memilah campuran produk yang lain – tetapi pada tiap kasus, produk utama adalah asam benzoat.

Penggunaan kalium manganat(VII) sebagai agen pengoksidasi dalam titrasi

Latar belakang

Larutan kalium manganat(VII) digunakan untuk menentukan konsentrasi semua agen pengoksidasi yang dipilah. Kalium manganat(VII) selalu digunakan dalam larutan asam.

Sebagai contoh, kalium manganat(VII) mengoksidasi
• Ion besi(II) menjadi ion besi(III)

• Larutan hidrogen peroksida menjadi oksigen

• Asam etandioat (asam oksalat) menjadi karbon dioksida (reaksi ini berlangsung dalam kondisi panas).

• Ion sulfit (ion sulfat(IV)) menjadi ion sulfat (ion sulfat(VI))

Pada setiap kasus, persamaan setengah reaksi untuk ion manganat(VII) daalm larutan asam adalah:

Persamaan tersebut dapat digabungkan untuk memberikan kamu persamaan ion secara keseluruhan untuk setiap kemungkinan reaksi. Hal ini, tentunya, juga memberikan kepada kamu suatu perbandingan reaksi.

Sebagai contoh, ketika persamaan digabungkan, kamu menemukan bahwa 1 mol ion MnO4- bereaksi dengan 5 mol ion Fe2+. Melalui informasi yang diperoleh tersebut, perhitungan titrasi sama seperti yang lain.
Melakukan titrasi

Larutan kalium manganat(VII) selalu dimasukkan ke dalam buret, dan larutan yang lain ditempatkan dalam labu yang diasamkan dengan asam sulfat encer terlebih dahulu.

Larutan kalium manganat(VII) menetes kedalam labu dan menjadikannya tidak berwarna. Titik akhir adalah warna merah muda permanen yang muncul pertama kali dalam larutan yang menunjukkan adanya sedikit ion manganat(VII) berlebih.

Permasalahan pada penggunaan larutan kalium manganat(VII)

Terdapat dua hal yang perlu kamu ketahui:
• Kalium manganat(VII) tidak dapat digunakan pada titrasi yang mengandung ion-ion klorida atau bromida yang mana kedua ion tersebut dapat teroksidasi. Jumlah kalium manganat(VII) yang tidak diketahui digunakan dalam reaksi samping, dan pasti hasil titrasi tidak akurat.

Hal inilah yang menyebabkan kenapa kamu tidak boleh mengasamkan larutan dengan asam klorida.
• Kalium manganat(VII) bukan standar primer. Ini berarti bahwa kalium manganat(VII) tidak dapat dibuat untuk menghasilkan larutan stabil yang konsentrasinya diketahui dengan akurat.

Kalium manganat(VII) berwarna kuat dan ini memungkinkan untuk dilihat ketika kristal yang kamu gunakan dilarutkan semuanya, dan untuk jangka waktu yang lama kalium manganat(VII) dapat mengoksidasi air yang terlarut menjadi oksigen.

Botol larutan kalium manganat(VII) selalu memiliki endapan coklat pada bagian atasnya. Endapan ini adalah mangan(IV) oksida – yang dihasilkan ketika ion manganat(VII) bereaksi dengan air.

Kamu dapat membuat larutan yang kamu mau secukupnya, dan kemudian di standarisasi melalui titrasi. Standarisasi sering kali dilakukan dengan larutan asan etandioat (asam oksalat), karena larutan asam etandioat (asam oksalat) merupakan standar primer.

Sabtu, 20 Maret 2010

konduktometer

konduktometri

Konduktometri merupakan metode analisis kimia berdasarkan daya hantar listrik suatu larutan. Daya hantar listrik (G) suatu larutan bergantung pada jenis dan konsentrasi ion di dalam larutan. Daya hantar listrik berhubungan dengan pergerakan suatu ion di dalam larutan ion yang mudah bergerak mempunyai daya hantar listrik yang besar.
Daya hantar listrik (G) merupakan kebalikan dari tahanan (R), sehingga daya hantar listrik mempunyai satuan ohm-1 . Bila arus listrik dialirkan dalam suatu larutan mempunyai dua elektroda, maka daya hantar listrik (G) berbanding lurus dengan luas permukaanelektroda (A) dan berbanding terbalik dengan jarak kedua elektroda (l).
G = l/R = k (A / l)
dimana k adalah daya hantar jenis dalam satuan ohm -1 cm -1
Daya Hantar Ekivalen (Equivalen Conductance) Kemampuan suatu zat terlarut untuk menghantarkan arus listrik disebut daya hantar ekivalen (^) yang didefinisikan sebagai daya hantar satu gram ekivalen zat
terlarut di antara dua elektroda dengan jarak kedua electroda 1cm. Yang dimaksud dengan berat ekuivalen adalah berat molekul dibagi jumlah muatan positif atau negatif. Contoh berat ekivalen BaCl2 adalah BM BaCl2 dibagi dua. Volume larutan (cm3) yang mengandung satu gram ekivalen zat terlarut diberikan oleh,

V = 100 / C

dengan C adalah konsentrasi (ekivalen per cm-3), bilangan 1000 menunjukkan 1 liter = 1000 cm3. Volume dapat juga dinyatakan sebagai hasil kali luas (A) dan jarak kedua elektroda (1).
V= l A
Dengan l sama dengan 1 cm ,
V = A = 100 / C
Substitusi persamaan ini ke dalam persamaan G diperoleh,
G = 1/R = 1000k/C
Daya hantar ekivalen (^) akan sama dengan daya hantar listrik (G) bila 1 gram ekivalen larutan terdapat di antara dua elektroda dengan jarak 1 cm.
^ = 1000k/C
Daya hantar ekivalen pada larutan encer diberi simbol yang harganya tertentu untuk setiap ion.
Pengukuran Daya Hantar Listrik
Pengukuran daya hantar memerlukan sumber listrik, sel untuk menyimpan larutan dan jembatan (rangkaian elektronik) untuk mengukur tahanan larutan.

1. Sumber listrik
Hantaran arus DC (misal arus yang berasal dari batrei) melalui larutan merupakan proses faradai, yaitu oksidasi dan reduksi terjadi pada kedua elektroda. Sedangkan arus AC tidak memerlukan reaksi elektro kimia pada elektroda- elektrodanya, dalam hal ini aliran arus listrik bukan akibat proses faradai. Perubahan karena proses faradai dapat merubah sifat listrik sel, maka pengukuran konduktometri didasarkan pada arus nonparaday atau arus AC.

2. Tahanan Jembatan
Jembatan Wheatstone merupakan jenis alat yang digunakan untuk pengukuran daya hantar.

3. Sel
Salah satu bagian konduktometer adalah sel yang terdiri dari sepasang elektroda yang terbuat dari bahan yang sama. Biasanya elektroda berupa logam yang dilapisi logam platina untuk menambah efektifitas permukaan elektroda.

Titrasi Konduktometri
Metode konduktometri dapat digunakan untuk menentukan titik ekivalen suatu titrasi, berupa beberapa contoh titrasi konduktometri dibahas berikut,
Titrasi asam kuat- basa kuat. Sebagai contoh lrutan HCl dititrasi ole NaOH. Kedua larutan ini adalah penghantar listrik yang baik. Kurva titrasinya ditunjukkan pada gambar di bawah ini. daya hantar H+ turun sampai titik ekivalen tercapai. Dalam hal ini jumlah H+ makin berkurang di dalam larutan, sedangkan daya hantar OH- berrtambah setelah titik ekivalen (Te) tercapai karena jumlah OH- di dalam larutan bertambah. Jumlah ion Cl- di dalam larutan tidak berubah, karena itu daya hantar konstan dengan penambahan NaOH. Daya hantar ion Na+ bertambah secara perlahan-lahan sesuai dengan jumlah ion Na+.

POLAROGRAFI
Metode polarografi adalah metode analisis yang didasarkan pada kiurva arus tegangan yang diperoleh secara elektrolisis. Jadi peristiwa redoks digunakan di dalam metode ini, terutama reduksi. Iomn-ion logam dan senyawa organik yang dapat direduksi dapat ditentukan jenis maupun konsentrasinya dengan metode ini. Batas deteksi metode ini kurang lebih 2. 10-6M.

Polarograf
Polarograf (instrumen untuk polarografi) terdiri dari bagian sel polarografi (sel elektrolisis) dan pencatat polarogram. Sel elektrolisis merup[akjan bagian yangb paling penting dari polarograf. Sel polarografi ditunjukkan pada gambar.
Sel ini dapat dituliskan sebagai Sel terdiri dari 2 elektroda yaitu elektroda kalomel sebagai elektroda pembanding dan elektroda tetes raksa (DME) dropping mercury elektrode) sebagai elektroda indikator. Dan pipa saluran gas N2 semuanya dicelupkan ke dalam larutan yang sedang dianalisis, gas N2 dimasukkan untuk mengusir gas O2 yang terlarut karena O2 dapat direduksi. Pereduksian O2 terjadi dalam 2 tahap pada proses ini. Oleh karena elektroda Hg bekerja pada pengukuran inbi maka elektroda Hg disebut wqorking elektrode. Reaksi redeuksi terjadi pada permukaan air raksa. Bila larutan mengandung ion logam Mn+, maka semua ion logam akan bergertak menuju permukaan tetesan Hg untuk direduksi. Ion logam berubah menjadi amalgam dengan Hg. Selama reaksi reduksi berlamngsung arus kana mengfalir dan jumlahnya dapat teramati, baiasanya dinyaatakan dalam mikroamapere. Reaksi reduksi ini berlangsung pada harga potensial tertentu, bergantung pada jenis zat/ ion yang sedang direduksi. Selama pengukuran berlangsung, air rtaksa diteteskan secara teratur dengan besar tetesan tertentu. Umumnya elektroda Hg diapakai dalam metode polarografi karena dengan penetaesan yang teratur diperoleh permukaan elektroda yang selalu segar dan bersih sehingga reaksi eduksi berlangsung cepat. Elektrode-ellektrode platina (Pt) dan emas (Au) juga dapatb diapakai dalam metode polartografi.

Polarogram
Pengukuran polartografi mengasilgan grafik (kurva) yang menyatakan hubungan antara arus (mA) dan potensial (Volt). Sumbu horisontal diberi nama potensaiaal(tegangal). Sedangkan sumbu vertikal diberi nama . Arus konstan yang diperoleh setelah peningkatan arus secara tajam disebut limiting current, sedangkan arus konstan yang diperoleh senbelum peningkatan arus secara tajam disebut residual current. Limiting current (Ii1) dihasdilkan pada pengukuran analit, sedangkan residual current diuhasilkan pada pengukuran larutan blangko sebelum analit ditambahakan. Perbedaan anatara limiting current dengan residual curent diusebut arus difusi, id. Harga potensial ketika arus mulai meningkat disebut potensial penguraian (decomposisting potensial).

Titrasi Asam-Basa
2.1.Termokologi Analisis Volumetri
Volume pada jumlah reagen yang ditambahkan tepat sama dengan yang diperlukan untuk bereaksi sempurna oleh zat yang dianalisis disebut sebagai titik ekivalen. Misalnya dalam titrasi AgNO3 dengan NaCl, titik akivalen. Misalnya dalam titrasi AgNO3 dengan NaCl, titik ekivalen tercapai bila 1 mol AgNO3 bereksi dengan I mol NaCl sebagai berikut :
AG + Cl AgCl
Konsentrasi Ag, Cl yang tidak terendapkan harus sama dengan titik ekivalen dan dari data hasil kali kelarutan AgCl besarnya konsentrasi ini 1,2 x 10 molar pada 25C. Sedangkan volume di mana perubahan warna indicator nampak oleh pengamat merupakan titik akhir. Titik ekivalen dan titik akhir tidaklah sama. Dengan indicator Na2CrO4 untuk reaksi di atas, maka endapan AgCrO4 akan menunjukkan titik akhir pada [Ag] > 1,2 x 10M yaitu konsentrasi kelarutannya. Tetapi pada prakteknya titik akhir tercapai setelah titik ekivalen, karena AgCrO4 harus terbentuk dahulu sebelum terendapkan, sedangkan untuk terbentuk diperlukan sejumlah tertentu reagen. Perbedaan antara titik akhir dan titik akivalen disebut sebagai kesalahan titik akhir. Kesalahan titik akhir adalah kesalahan acak yang terminan dan nilainya dapat dihitung. Dengan menggunkan metode potensiometri dan konduktometri kesalahan titik akhir ditekan sampai nol.
1. Titrasi Asam Basa
Titrasi asam-basa dapat memberikan titik akhir yang cukup tajam dan untuk itu digunakan pengamatan dengan indicator bila pH pada titi ekivalen antara 4-10. Demikian juga titik akhir titrasi akan tajam pada titrasi asam tau basa lemah jika pentitrasian adalah basa atau asam kuat dengan perbandingan tetapan disosiasi asam lebih besar dari 10. Selama titrasi asam-basa , pH larutan berubah secara khas. pH berubah secara dratis bila volume titrasinya mencapai titik ekivalen.
Kesalahan titi akhir dan pH pda titik ekivalen merupakan tujuan pembuatan kurva titrasi. Pada reaksi asam-basa, proton ditransfer dari satu molekul ke molekul lain. Dalam air, proton biasanya tersolvasi sebagai H3O. Reaksi asam basa bersifat reversible. Reaksi dapat digambarkan sebagai berikut:
HA + H2O H3O + A air sebagai basa
B + H2O BH + OH air sebagai asam.
Disini [A] adalah basa konjugasi, HB adalah asam konjugasi berarti secara umum:
Asam + basa basa konjugasi + asam konjugasi
CH3COOH + H2O CH3COO + H3O (basa)
CH3COO + H2O CH3COOH + OH (asam)
Di sini KA = dan KB =
Jika Kw = adalah hasil kali ionic air, maka adalah mungkin untuk menyatakan H dalam persamaan yang mengandung suku KA, KB dan Kw untuk kombinasi berbagai tipe asam kuat dan lemah serta basa.
2.3.Kurva Titrasi Asam-basa
Larutan yang dititrasikan dalam asidimetri-alkalimetri mengalami perubahan pH. Misalnya bila larutan asam titrasi dengan basa, maka pH larutan mula-mula rendah dan selama titrasi terus-menerus naik. Bila pH ini diukur dengan pengukur pH (pH meter). Pada awal titrasi (yakin belum ditambah basa) dan pada waktu-waktu tertentu setelah titrasi dimulai maka kalau pH larutan di alurkan lawan volume titran, kita peroleh grafik yang disebut kurva titrasi. Beberapa contoh kurva titrasi sebagai berikut :
Bila suatu indicator pH kita pergunaan untuk menunjukkan untuk menunjukkan titik akhir titrasi maka:
1.indicator harus berubah warna tepat pada saat titrant menjadi ekivalen dengan titrant agar tidak terjadi kesalahan titrasi.
2. Perubahan warna ini harus terjadi mendadak, agar tidak ada keraguan-keraguan tentang kapan titrasi harus dihentikan. Bila perubahan warna mendadak sekali (yakin tetes terakhir menyebabkan warna sama sekali). Mka dikatakan, bahwa titik akhir tegas/tajam (sharp).

2.4. PH Larutan Pada Titik Ekivalen
Diketahui pH titik ekivalen berbeda-beda, tergantung dari macam titrant dan titrat, dan sering juga tergantung dari konsentrasi titrant dan titrat. Ph itu menentukan indicator apa yang dapat/malahan harus digunakan. Maka penting untuk mengerti dengan jelas dari mana asal/bagaimana mengetahui beberapa pH ttitik ekivalen itu. Hanya satu patokan yang perlu diingat, yakni pH titik ekivalen ialah pH larutan yang terdapat pada titik akivalen itu dan larutan itu adalah
1. Larutan garam (dalam titrasi asam oleh basa dan sebaliknya)
1. asam maupun basa itu kuat : larutan garamnya mempunyai pH 7 sehingga indicator agak leluasa pilihannya: baik yang bertrayek pH dibawah 7, sekitar 7 ataupun di atas 7 dapat dipakai
2. asam kuat-basa lemah : larutan garamnya mempunyai pH rendah (<7)>
[ H] = atau PH = ½ (14 – p Kb + pCg)
indicator yang cocok mempunyai trayek pH dibawah 7 (misalnya jingga metil)
3. asam lemah-basa kuat : larutan garamnya mempunyai pH tinggi (>7) karena garam tersebut terjadi dari asam lemah dan basa kuat dan basa kuat dan terhidrolisasi, sehingga [OH] = atau POH = ½ (14 – pKa + pCg). Indikator yang cocok mempunyai trayek pH diatas 7 (misalnya fenolftalen).
2. Larutan asam lemah dan garam (dalam titrasi garam asam lemah oleh asam kuat), dengan sendirinya pH larutan rendah, yakni : [H] = atau POH = ½ (pKa+ pCa).
3. Larutan basa lemah dan garam (dalam titrasi garam dari basa lemah oleh basa kuat) : maka larutan tinggi, yakni : [OH] = atau POH = ½ (pKb+ pCb) dan indicator yang harus dipakai mempunyai trayek pH di atas 7. Dengan pengertian di atas, jelas indicator yang dibutuhkan tidak terlalu sukar diingat dan sama sekali tidak perlu dihafalkan.
2.5. Indikator Asam-basa
Indikator asam-basa adalah zat yang berubah warnanya atau membentuk fluoresen atau kekeruhan pada suatu range (trayek) pH tertentu. Indikator asam-basa terletak pada titik ekivalen dan ukuran dari pH. Zat-zat indicator dapat berupa asam atau basa, larut, stabil, dan menunjukkan perubahan warna yang kuat serta biasanya adalah zat organic. Perubahan warna disebabkan oleh resonansi isomer electron.
Indikator asam-basa secara garis besar dapat diklasifikasikan dalam tiga golongan:
1. Indikator ftalein dan indicator sulfoftalein
2. Indikator azo
3. Indikator trifenilmetana
Indikator ftalein dibuat dengan kondensasi anhidrida ftalein dengan fenol, yaitu fenoftalein. Pada pH 8,0-9,8 berubah warnanya menjadi merah.anggota-anggota lainya adalah : o-cresolftalein, thimolftalein, -naftolftalein. Indikator sulfoftalein dibuat dari kondensasi anhidrida ftalein dan sulfonat. Yang termasuk dalam kelas ini: thymol blu, m-cresolpurple, chlorofenolred, bromofenolred, bromofenolblue, bromocresolred, dan sebagainya. Indikator azo, diperoleh dari reaksi amina romatik dengan garam dizonium, misalnya: methylyellow atau p-dimetil amino azo benzene.Perubahan warna terjadi pada larutan asam kuat. Metil-orange tidak larut dalam air. Indikator yang lain yang masuk kelas ini adalah metilyellow, metilred dan tropaelino.
2.6.Cara Mengetahui Titik Ekivalen
Ada dua cara umum untuk menentukan titik ekuivalen pada titrasi asam basa.
1. Memakai pH meter untuk memonitor perubahan pH selama titrasi dilakukan, kemudian membuat plot antara pH dengan volume titrant untuk memperoleh kurva titrasi. Titik tengah dari kurva titrasi tersebut adalah “titik ekuivalent”.
2. Memakai indicator asam basa. Indikator ditambahkan pada titrant sebelum proses titrasi dilakukan. Indikator ini akan berubah warna ketika titik ekuivalen terjadi, pada saat inilah titrasi kita hentikan.
Pada umumnya cara kedua dipilih disebabkan kemudahan pengamatan, tidak diperlukan alat tambahan, dan sangat praktis. Indikator yang dipakai dalam titrasi asam basa adalah indicator yang perbahan warnanya dipengaruhi oleh pH. Penambahan indicator diusahakan sesedikit mungkin dan umumnya adalah dua hingga tiga tetes. Untuk memperoleh ketepatan hasil titrasi maka titik akhir titrasi dipilih sedekat mungkin dengan titik equivalent, hal ini dapat dilakukan dengan memilih indicator yang tepat dan sesuai dengan titrasi yang akan dilakukan. Keadaan dimana titrasi dihentikan dengan cara melihat perubahan warna indicator disebut sebagai “titik akhir titrasi”.
2.7.Rumus Umum Titrasi
Pada saat titik ekuivalen maka mol-ekuivalent asam akan sama dengan mol-ekuivalent basa, maka hal ini dapat kita tulis sebagai berikut:
Mol-ekivalen asam = mol-ekuivalen basa
Mol-ekuivalen diperoleh dari hasil perkalian antara Normalitas dengan volume maka rumus diatas dapat kita tulis sebagai:
Nx asam = NxV basa
Normalitas diperoleh dari hasil perkalian antara molaritas (M) dengan jumlah ion H+ pada asam atau jumlah ion OH pada basa, sehingga rumus diatas menjadi:
nxMxV asam = nxVM basa
keterangan :
N = Normalitas
V = Volume
M = Molaritas
n = jumlah ion H+ (pada asam) atau OH – (pada basa)

Kestabilan kompleks-kompleks logam EDTA
Dalam praktek, kestabilan kompleks-kompleks logam EDTA dapat diubah dengan (a) mengubah-ubah pH dan (b) adanya zat-zat pengkompleks lain. Maka tetapan kestabilan kompleks EDTA akan berbeda dari nilai yang dicatat untuk suatu pH tertentu dalam larutan air EDTA akan berbeda dari nilai yang dicatat untuk kondisi-kondisi baru ini dinamakan tetapan kestabilan nampak atau tetapan kestabilan menurut kondisi. Jelaslah bahwa efek dari kedua faktor ini perlu kita teliti dengan agak terperinci.
(a) Efek pH. Tetapan kestabilan nampak pada suatu pH tertentu dapat dihitung dari angka banding K/a, diamana a adalah angka banding dari EDTA total yang tak tergabung (dalam semua bentuk) terhadap EDTA dalam bentuk Y4-. Begitulah KH, tetapan kesatbilan namapak untuk kompleks logam EDTA pada suatu pH tertentu, dapat ditulis dari pernyatan.
log KH = log K – log a (7)
(b) Efek zat-zat pengkompleks lain. Jika suatu zat pengkompleks lain (misalnya NH3) juga terdapat dalam larutan, maka dalam persamaan (6), [Mn+] akan berkurang karena pengkompleksan ion logam itu dengan molekul-molekul amonia. Pengurangan dalam konsentrasi efektif, ini akan mudah ditunjukkan, denganmenampilkan suatu faktor b, yang didefinisikan sebagai angka banding (dari) jumlah konsentrasi semua bentuk ion logam yang tak terkomplekkan dengan EDTA terhadap konsentrasi ion sederhana (terhidrasi). Maka tetapan kestabilan namapak dari kompleks Logam EDTA, jika kita perhitungkan efek-efek baik dari pH maupun dari adanaya zat-zat pengkompleks lain, diberikan oleh :
log KHZ = log K - log a -log b
Dalam titrasi asam basa, titik akhir umumnya dideteksi dengan indikator. Pada titrasi EDTA, suatu indikator yang peka ion logam (disingkat indikator-logam atau indikator ion-logam) sering digunkan untuk mendeteksi perubahan-perubahan pH. Indikator demikian (yang mengandung jenis-jenis gugusan-guusan sepit dan umumnya memiliki sistem resonansi yang khas pada zat warna) membentuk kompleks dengan ion-ion logam khusus. Kompleks-kompleks ini berbeda warnanya dari indikator yang bebas, dan akibatnya, terjadilah perubahan warba yang mendadak pada titik ekivalen. Titik akhit titrasi dapat juga dievaluasi dengan lain-lain metode, yang meliputi teknik-teknik potensiometri, amperometri, konduktometri, dan spektrofotometri.
Penentuan Ca dan Mg dalam air sudah dilakukan dengan titrasi EDTA. pH untuk titrasi adalah 10 dengan indikator eriochrom black T. Pada pH lebih tinggi, 12, Mg(OH)2 akan mengendap, sehingga EDTA dapat dikonsumsi hanya oleh Ca2+ dengan indikator murexide. Adanya penggangguan Cu bebas dari pipa – pipa saluran air dapat dimasking dengan H2S. EBT yang dihaluskan bersama NaCl padat kadang kala juga digunakan sebagai indikator untuk penentuan Ca ataupun hidroksinaftol. Seharusnya Ca tidak ikut terkopresipitasi dengan Mg, oleh karena itu EDTA direkomendasikan. Bagaimana juga indikator Patton-Reeder terbaik untuk penentuan kalsium dalam air sudah dibandingkan dengan indikator lain.
Contoh lain adalah titrasi campuran Mg, Cu, Zn tanpa pemisahan pendahuluan, dengan memenfaatkan reaksi masking-demasking selama titrasi dengan EDTA. Logam total dititrasi pada pH 10 dengan indikator EBT. Kemudian Zn dan Cu dimasking dengan KCN, sehingga Mg dalam larutan dapat ditentukan. Setelah titik akhir tercapai, formaldehid ditambahkan untuk mendisosiasi kompleks Zn(CN)4, sehingga Zn dapat dibebaskan dan titrasi dilanjutkan untuk menentukan Zn dalam larutan, dan jumlah Cu dapat dihitung dari perbedaan titrasi dengan logam total.

kondensor

KONDENSOR
Kondensor adalah salah satu jenis mesin penukar kalor (heat exchanger) yang berfungsi untuk mengkondensasikan fluida kerja. Pada sistem tenaga uap, fungsi utama kondensor adalah untuk mengembalikan exhaust steam dari turbin ke fase cairnya agar dapat dipompakan kembali ke boiler dan digunakan kembali. Selain itu, kondensor juga berfungsi untuk menciptakan back pressure yang rendah (vacuum) pada exhaust turbin . Dengan back pressure yang rendah, maka efisiensi siklus dan kerja turbin akan meningkat.
Klasifikasi Kondensor
Secara umum, terdapat 2 jenis kondensor yaitu : direct-contact condenser dan surface condenser. Surface condenser adalah jenis yang paling banyak digunakan di powerplant.
Direct-contact Condenser
Seperti namanya, direct-contact condenser mengkondensasikan steam dengan mencampurnya langsung dengan air pendingin. Direct-contact atau open condenser digunakan pada beberapa kasus khusus, seperti : ketika digunakan dry cooling tower, pada geothermal powerplant, dan pada powerplant yang menggunakan perbedaan temperatur di air laut (OTEC). Ada beberapa tipe direct-contact condenser :
a. Spray Condenser
Pada spray condenser, pencampuran steam dengan air pendingin dilakukan dengan jalan menyemprotkan air ke steam. Sehingga steam yang keluar dari exhaust turbin pada poin 2 (gambar 3.15.) bercampur dengan air pendingin pada poin 5 menghasilkan kondensat yang mendekati fase saturated, kemudian dipompakan kembali ke 4. Sebagian dari kondensat dikembalikan ke boiler sebagai feedwater. Sisanya didinginkan, biasanya didalam dry- (closed-) cooling tower ke poin 5. Air yang didinginkan pada poin 5 disemprotkan ke exhaust turbin dan proses berulang.
Â
Gambar Flow diagram direct-contact condenser jenis spray condenser. SJAE = steam-jet air ejector
b. Barometric dan Jet Condenser
Ini merupakan jenis awal dari kondenser. Jenis ini beroperasi dengan prinsip yang sama dengan spray condenser kecuali tidak dibutuhkannya pompa pada jenis ini. Vacuum dalam kondensor diperoleh dengan menggunakan prinsip head statis seperti pada barometric condenser, atau menggunakan diffuser seperti pada jet condenser.
Â
Gambar Skema direct-contact condenser: (a) barometric, (b) jet
Surface Condenser
Surface condenser merupakan jenis yang paling banyak digunakan di powerplant. Jenis ini merupakan heat exchanger tipe shell and tube, dimana mekanisme perpindahan panas utamanya adalah kondensasi saturated steam pada sisi luar tube dan pemanasan secara konveksi paksa dari circulating water di dalam tube. Secara spesifik, prinsip kerja surface codensor di bahas pada sub bab berikut.
Prinsip Kerja Surface Condenser
Prinsip kerja surface condenser seperti tampak pada gambar 3.17. adalah sebagai berikut. Steam masuk ke dalam shell kondensor melalui steam inlet connection pada bagian atas kondensor. Steam kemudian bersinggungan dengan tube kondensor yang bertemperatur rendah sehingga temperatur steam turun dan terkondensasi, menghasilkan kondensat yang terkumpul pada hotwell. Temperatur rendah pada tube dijaga dengan cara mensirkulasikan air yang menyerap kalor dari steam pada proses kondensasi. Kalor yang dimaksud disini disebut kalor laten penguapan dan terkadang disebut juga kalor kondensasi (heat of condensation) dalam lingkup bahasan kondensor. Kondensat yang terkumpul di hotwell kemudian dipindahkan dari kondensor dengan menggunakan pompa kondensat ke exhaust kondensat.
Ketika meninggalkan kondensor, hampir keseluruhan steam telah terkondensasi kecuali bagian yang jenuh dari udara yang ada di dalam sistem. Udara yang ada di dalam sistem secara umum timbul akibat adanya kebocoran pada perpipaan, shaft seal, katup-katup, dan sebagainya. Udara ini masuk ke dalam kondensor bersama dengan steam. Udara dijenuhkan oleh uap air, kemudian melewati air cooling section dimana campuran antara uap dan udara didinginkan untuk selanjutnya dibuang dari kondensor dengan menggunakan air ejectors yang berfungsi untuk mempertahankan vacuum di kondensor.
Untuk menghilangkan udara yang terlarut dalm kondensat akibat adanya udara di kondensor, dilakukan de-aeration. De-aeration dilakukan di kondensor dengan memanaskan kondensat dengan steam agar udara yang terlalut pada kondensat akan menguap. Udara kemudian ditarik ke air cooling section dengan memanfaatkan tekanan rendah yang terjadi pada air cooling section. Air ejector kemudian akan memindahkan udara dari sistem.
Â
Gambar Skema Surface Condenser

Kondensor merupakan alat penukar kalor pada sistem refrigerasi yang berfungsi untuk melepas kalor ke lingkungan. Bagian kondensor biasanya diberi kipas untuk menghisap udara yang melewati celah alat penukar kalor. Modifikasi terkadang dilakukan dengan menambahkan kipas udara. Penambahan perangkat tersebut dimaksudkan untuk meningkatkan laju aliran udara sehingga mempercepat proses pelepasan kalor ke lingkungan. Penelitian ini akan mengungkap pengaruh peningkatan laju aliran massa udara di kondensor terhadap koefisien prestasi sistem pendingin AC. Koefisien prestasi yang tinggi sangat diharapkan dalam daur refrigerasi. Dalam melakukan penelitian dirakit sistem pendingin AC yang terdiri dari kompresor, kondensor, katup ekspansi, dan evaporator. Refrigeran yang dipergunakan adalah freon-12. Bagian kondensor dipasang kipas angin yang bisa diatur putarannya. Untuk keperluan pengambilan data ditambahkan alat ukur seperti orifice, manometer, dan termometer yang menyatu dengan sistem, sedangkan kecepatan udara yang dihisap diukur dengan anemometer. Dalam penelitian berhasil mengukur data tekanan, temperatur, dan laju aliran massa refrigeran dengan variasi kecepatan udara pendingin di kondensor. Kecepatan udara pendingin kondensor diatur dengan menambahkan putaran motor listrik penggerak kipas. Variasi kecepatan udara pendingin antara 0,2 – 2,98m/s yang dihasilkan dari putaran kipas 60-309rpm. Hasil penelitian menunjukkan semakin besar laju aliran udara untuk mendinginkan kondensor maka besarnya koefisien prestasi semakin meningkat. Pada kecepatan udara pendingin di atas 2,98m/s pengaruh perubahan terhadap koefisien prestasi relatif kecil
Kondensor ditempatkan di depan radiator. Kondensor berfungsi untuk mendinginkan gas refrigerant sehingga terkondensasi menjadi cair dengan tekanan yang tinggi.Set elah cair, refrigerant mengalir ke receiver dehidrator. Pendingin yang dilakukan kondensor berasal dari aliran udara oleh kipas radiator. Jumlah panas yang dilepaskan refrigerasi dalam kondensor sama dengan panas yang diserap dalam evaporator ditambah panas kerja yang diperlukan kompresor untuk menekan refrigrant.Semakin banyak panas yang dilepas dalam kondensor,maka semakin besar pula efek mendinginkan yang akan diperoleh dari evaporator.

Dalam kondensor akan terjadi perubahan bentuk zat pendingin, karena kondensasi yang dilakukan kondensor. Perubahan bentuk tersebut dari gas menjadi cair. Supaya pendinginan/kondensasi dari zat pendingin lebih sempurna, maka pemasangan kondensor perlu memperhatikan arah aliran udara yang membantu proses pendinginan kondensor. Pemasangan kondensor pada mobil biasanya ditempatkan di depan radiator supaya dapat dialiri udara waktu mobil berjalan.
Adakalanya pemasangan kondensor di depan radiator dilengkapi dengan dengan kipas-kipas pendingin, tetapi kipas pendingin mesin diganti dengan yang lebih besar supaya pendinginan mesin dapat dilaksanakan bersama-sama dengan pendinginan kondensor. Sistim ini merugikan bila sistim AC tidak dipakai , karena kipas yang besar akan menggunakan daya mekanis mesin, akibatnya boros bahan bakar. Untuk itu memakai kipas pendingin listrik tersendiri pada kondensor merupakan solusi lain meskipun kondensor dapat dipasang di depan radiator, di atas atap mobil, di bawah lantai, atau tempat lain yang memungkinkan.
Pipa-pipa kondensor ada yang berbentuk bulat ada juga yang seperti bayak lubang-lubang aliran zat pendingin. Pipa tersebut dilengkungkan secara paralel dari awal sampai keluarnya zat pendingin menuju saringan. Untuk memperluas pemukaan pendingin, diantara pipa yang dilengkungkan itu diberi kisi-kisi pendingin supaya sistem pendinginan lebih sempurna (panas diserap oleh kisi pendingin), sehingga kondensasi dan perubahan bentuk zat pendinginan dari gas menjadi cair akan terjadi.